Weighted Strichartz Estimates with Angular Regularity and Their Applications

نویسندگان

  • DAOYUAN FANG
  • CHENGBO WANG
چکیده

In this paper, we establish an optimal dual version of trace estimate involving angular regularity. Based on this estimate, we get the generalized Morawetz estimates and weighted Strichartz estimates for the solutions to a large class of evolution equations, including the wave and Schrödinger equation. As applications, we prove the Strauss’ conjecture with a kind of mild rough data for 2 ≤ n ≤ 4, and a result of global well-posedness with small data for some nonlinear Schrödinger equation with L2-subcritical nonlinearity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Strichartz and Eigenfunction Estimates for Low Regularity Metrics

A bstract . We produce, for dimensions n ≥ 3, examples of wave operators for which the Strichartz estimates fail. The examples include both Lipschitz and C1,α metrics, for each 0 < α < 1, where by the latter we mean that the gradient satisfies a Hölder condition of order α. We thus conclude that, on the scale of Hölder regularity, an assumption of at least 2 bounded derivatives for the metric (...

متن کامل

Strichartz Estimates for the Magnetic Schrödinger Equation

We prove global, scale invariant Strichartz estimates for the linear magnetic Schrödinger equation with small time dependent magnetic field. This is done by constructing an appropriate parametrix. As an application, we show a global regularity type result for Schrödinger maps in dimensions n ≥ 6.

متن کامل

Almost Global Existence for Some Semilinear Wave Equations with Almost Critical Regularity

For any subcritical index of regularity s > 3/2, we prove the almost global well posedness for the 2-dimensional semilinear wave equation with the cubic nonlinearity in the derivatives, when the initial data are small in the Sobolev space Hs × Hs−1 with certain angular regularity. The main new ingredient in the proof is an endpoint version of the generalized Strichartz estimates in the space Lt...

متن کامل

Strichartz Estimates for Wave Equations with Coefficients of Sobolev Regularity

Wave packet techniques provide an effective method for proving Strichartz estimates on solutions to wave equations whose coefficients are not smooth. We use such methods to show that the existing results for C1,1 and C1,α coefficients can be improved when the coefficients of the wave operator lie in a Sobolev space of sufficiently high order.

متن کامل

Strichartz and Smoothing Estimates for Schrödinger Operators with Almost Critical Magnetic Potentials in Three and Higher Dimensions

In this paper we consider Schrödinger operators H = −∆+ i(A · ∇+∇ ·A) + V = −∆+ L in R, n ≥ 3. Under almost optimal conditions on A and V both in terms of decay and regularity we prove smoothing and Strichartz estimates, as well as a limiting absorption principle. For large gradient perturbations the latter is not an immediate corollary of the free case as T (λ) := L(−∆−(λ+i0)) is not small in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009